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Abstract

Theory predicts that aggregate volatility ought to be a priced risk factor. In an

influential study with more than 1000 citations on Google Scholar, Ang, Hodrick,

Xing, and Zhang (2006) propose an ex post factor, FV IX, intended as a proxy for

aggregate volatility risk. Their test validating FV IX relies on an OLS regression

of portfolio excess returns on FV IX and other independent variables over the data

period February 1986–January 2001. October 1987 is an outlier, in which FV IX

exhibits a 26-sigma deviation. The inclusion of this outlier results in a reduction of

the regression standard error by more than a factor of two, creating the appearance

of statistical significance when none is present. We explain how standard statistics

can be used to assess the suitability of a dataset for OLS regression.
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Since the market exhibits stochastic volatility, equilibrium theory going back to Mer-

ton (1973) and Breeden (1979) predicts that aggregate volatility ought to be a priced

factor. For example, Anderson and Raimondo (2008) develop an equilibrium model whose

primitives are stock dividends, agent endowments, and agent utility functions. If stock div-

idends or agent endowments (or even agent’s utility functions) exhibit stochastic volatility,

then except in non-generic “knife-edge” cases, the price of the market portfolio of securi-

ties will exhibit stochastic volatility; the volatility of the market portfolio will be a factor

which, because it cannot simply be diversified away, generically will have a non-zero price.

There is a large literature exploring the relationship between volatility and asset per-

formance. For example, Carr and Wu (2009) quantify the variance risk premium with

portfolios of options. An empirical study by Bollerslev, Tauchen, and Zhou (2009) indi-

cates that a low volatility risk premium predicts high returns and a high volatility risk

premium predicts low returns. Sefton, Jessop, Rossi, Jones, and Zhang (2011) attribute

the anomalous returns to low-risk investing to variable betas. Adrian and Shin (2010)

show that changes in collateralized borrowing and lending on an intermediary’s balance

sheet are significant forecasting variables for market-wide volatility risk as measured by

the VIX Index. In the context of the ICAPM, Campbell, Giglio, Polk, and Turley (2012)

develop a vector autoregression that relates aggregate stock market return to volatility

shocks. Their model reveals low frequency movements in market volatility that explain

the underperformance of growth stocks relative to value stocks. Cremers, Halling, and

Weinbaum (2012) use investable option strategies to model aggregate jump and volatility

risk in the cross-section of asset returns.

A common feature of the diverse collection of empirical articles exploring the rela-

tionship between volatility and asset performance is their reference to Ang, Hodrick, Xing,

and Zhang (2006). Among the striking findings in that article, which has more than 1000

citations on Google Scholar, are that the volatility of the aggregate market is a priced risk,

and that innovations in aggregate volatility carry a statistically significant negative price

of risk of approximately -1% per annum. The results rely on an ex post factor, FV IX,
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which is intended as a proxy for aggregate volatility risk.

In the course of our research, we followed the same path as many others did and

turned to FV IX in order to gain insight into the nature of volatility risk. In an attempt

to make sense of empirical results that we found puzzling, we replicated the construction

of FV IX. We also replicated the five monthly regressions used in Ang, Hodrick, Xing,

and Zhang (2006) to establish FV IX as a risk factor. The dependent variable in each

regression is a quintile portfolio of assets sorted by sensitivity to daily changes in the VIX

index.

We found that when the regression t-statistics are correctly interpreted, FV IX betas

are not statistically significant in any of the five regressions intended to establish the

efficacy of FV IX. This is documented in Table I, which shows the impact of removing

a a single leverage point (outlier of an independent variable), October 1987, from the

dataset: the magnitudes of the Newey-West t-statistics of the FV IX betas fall below the

Gaussian cutoff of 1.96. The point is not that the coefficients change when October 1987 is

omitted; they do change, but not dramatically. Rather, the point is that the October 1987

leverage point reduces the reported standard error of βFV IX by more than a factor of two

in each of the five regressions, making insignificant coefficients appear to be statistically

significant.

The potential for a leverage point or another type of influential observation to render

a model unsuitable for estimation with an OLS regression is well known in the statis-

tics literature; see, for example Chatterjee and Hadi (1986). However, standard measures

for detecting and managing influential observations are not part of standard practice in

empirical finance. The leverage points examined in this article are important from an

economic perspective since they represent actual market events. They are also interesting

and subtle from a statistical perspective: they materially deflate the volume of regres-

sion confidence ellipsoids but have a limited effect on the coefficients themselves, thereby

enabling pure noise to masquerade as statistical significance.

Our paper is organized as follows. In Section 1, we review the construction of FV IX

and the statistics used by Ang, Hodrick, Xing, and Zhang (2006) to support its efficacy. In

Section 2, we argue that the OLS regressions used to establish the statistical significance

of FV IX are inappropriate and lead to erroneous inference. In Section 3, we examine a

standard statistic used to measure the impact of a leverage point on statistical significance.
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In Section 4, we re-examine the statistical significance of βFV IX with a median regression,

which is less sensitive to leverage points and other types of outliers than OLS regression.

Section 5 concludes.

We explore some of the statistical properties of the October 1987 leverage points in

the first two of three appendices to this article. In Appendix A, we construct a simple

example that shows how a leverage point can generate apparent statistical significance

when none is present. Specifically we use OLS regression to estimate a one-factor model

whose underlying data is Gaussian with the exception of a single leverage point. The

example is crafted to highlight some of the interesting properties of the data set used to

estimate βFV IX . To further illustrate the pitfalls of neglecting leverage points, we present

in Appendix B a simulation showing how to generate apparent statistical significance

from pure noise and a single leverage point. While keeping the October 1987 value in

place, we randomly scrambled the other FV IX values. The final Appendix documents

discrepancies between Ang, Hodrick, Xing, and Zhang (2006, Table I) and our replication

of that table.

1 FVIX

The factor, FV IX, is a time-varying portfolio of equities that mimics the daily changes

in the original Chicago Board Options Exchange Market Volatility Index.1 As emphasized

in Ang, Hodrick, Xing, and Zhang (2006), change in V IX, ∆V IX, is a good proxy for

innovation in volatility risk at the daily level. However, volatility exhibits substantial mean

reversion. At the monthly level, ∆V IX is contaminated by this mean-reversion, making

it unsuitable as a measure of innovation in volatility risk.

Ang, Hodrick, Xing, and Zhang (2006, Page 269) explain that FV IX is intended to

provide a proxy for innovation in market volatility at a monthly horizon:

The major advantage of using FV IX to measure aggregate volatility risk is

that we can construct a good approximation for innovations in market volatil-

ity at any frequency. In particular, the factor mimicking aggregate volatility

innovations allows us to proxy aggregate volatility risk at the monthly fre-

quency by simply cumulating daily returns over the month on the underlying

base assets used to construct the mimicking factor.
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For completeness, we review the construction of FV IX. Each month, Ang, Hodrick,

Xing, and Zhang (2006) regress daily excess returns for each stock in their dataset, which

includes every common stock listed on the NYSE, AMEX and NASDAQ with more than

17 observations in that month, on the daily excess market return MKT and ∆V IX.

They use the β∆V IX estimates to sort stocks into quintiles; in each quintile, they then

form a value-weighted portfolio. Ang, Hodrick, Xing, and Zhang (2006, Table I) report

that the quintile portfolios have an average β∆V IX of -2.09, -0.46, 0.03, 0.54 and 2.18,

respectively, where the average is computed over all months in the sample period. These

values are called pre-formation betas. The most striking analysis concerns the properties

of the quintile portfolios in the month after they are formed. The mean monthly returns of

the first and fifth quintile portfolios are 1.64% and 0.60% in the subsequent month, with

the difference having a joint test t-statistic of -3.90. They also compute alphas for the

difference, relative to CAPM and the Fama-French 3-factor model, obtaining t-statistics

of -3.54 and -2.93.

From Ang, Hodrick, Xing, and Zhang (2006, Page 267):

While the differences in average returns and alphas corresponding to different

β∆V IX loadings are very impressive, we cannot yet claim that these differences

are due to systematic volatility risk. We examine the premium for aggregate

volatility within the framework of an unconditional factor model. There are

two requirements that must hold in order to make a case for a factor risk-based

explanation. First, a factor model implies that there should be contempora-

neous patterns between factor loadings and average returns. To test a factor

model, Black, Jensen, and Scholes (1972), Fama and French (1992), Fama and

French (1993), Jagannathan and Wang (1996), and Pástor and Stambaugh

(2003), among others, all form portfolios using various pre-formation criteria,

but examine post-ranking factor loadings that are computed over the full sam-

ple period. We must show that the portfolios . . . also exhibit high loadings with

volatility risk over the same period used to compute the alphas.” [emphasis

added]

For month t, FV IXt is the time-varying portfolio comprising weights on the quintiles

formed in month t − 1 which best matches ∆V IX in the month t. Ang, Hodrick, Xing,

and Zhang (2006) propose FV IXt as a proxy for volatility risk in month t. The test that
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the portfolios “exhibit high loadings with volatility risk over the same period used to

compute the alphas” is the monthly regression given in Ang, Hodrick, Xing, and Zhang

(2006, equation (6)):

rit = αi + βiMKTMKTt + βiSMBSMBt + βiHMLHMLt + βiFV IXFV IXt + εit (1)

where i = 1, . . . , 5 indexes the quintiles, MKT , SMB and HML are the Fama-French

market, size and value factors, FV IX is the mimicking aggregate volatility factor, and

the various βs are the corresponding factor loadings. The criteria Ang, Hodrick, Xing, and

Zhang (2006) have set for themselves require that βiFV IX be large and vary substantially

across the quintiles, and be statistically significant. The final column Ang, Hodrick, Xing,

and Zhang (2006, Table I) reports factor loadings of -5.06, -2.72, -1.55, 3.62, and 8.07,

with robust Newey-West t-statistics of -4.06, -2.64, -2.86, 4.53, and 5.32, which satisfy the

criteria. Our replication of the results in Ang, Hodrick, Xing, and Zhang (2006, Table I)

is in Panel A of Table I.2

2 The Apparent Statistical Significance of FV IX Be-

tas is Driven by a Single Leverage Point

The data period in Ang, Hodrick, Xing, and Zhang (2006), February 1986–January 2001,

includes a leverage point (a significant outlier of an independent variable): October 1987.

Indeed, this month is a leverage point for two of the independent variables: it is a -

5.5-sigma outlier for MKT and a 26-sigma outlier for FV IX.3 Outliers in a dependent

variable can change the regression beta and increase the standard error. By contrast,

leverage points may or may not change the regression beta, but they reduce the standard

error. A simple explanation of this is in Appendix A.

The regression defined by Ang, Hodrick, Xing, and Zhang (2006, Equation (6)) uses

180 monthly observations; the inclusion of a 26-sigma leverage point in FV IX raises the

sample standard deviation of FV IX from the other 180 months by a factor of roughly√
676+179

179
∼ 2.19 and lowers the OLS standard error for βiFV IX by a factor of 2. It has

an even greater effect on the Newey-West t-statistics used by Ang, Hodrick, Xing, and

Zhang (2006). The usual cutoff of t = ±1.96 depends on the assumption that the data

are Gaussian. These data are clearly not Gaussian, and t-statistics exceeding 1.96 are not
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sufficient to establish statistical significance. This is illustrated in Appendix B, where we

demonstrate that a leverage point can generate the illusion of statistical significance from

pure noise.

The results of our replication of Ang, Hodrick, Xing, and Zhang (2006, Table I) with

and without October 1987 are in Panels A and B of Table I. Panel A summarizes the

analysis on the full dataset; all five quintile FV IX beta estimates have t-statistics greater

than 1.96 and thus appear statistically significant if one misapplies the Gaussian cutoff.

Panel B summarizes the analysis on the same dataset with the October 1987 leverage

point excluded. None of the five quintile FV IX beta estimates are greater than 1.96 in

magnitude. The exclusion of October 1987 makes only modest changes in the regression

coefficients but results in a dramatic reduction of the t-statistics. When the 26-sigma

leverage point is excluded, there is no reduction of the standard error of βFV IX . The t-

statistics for the differences between the means, CAPM alphas and Fama-French alphas

in the fifth and first quintiles exceed 1.96 in magnitude when October 1987 is removed;

indeed, all three differences increase in magnitude and exhibit higher t-statistics. When

October 1987 is removed, the Full Sample Post-Formation βFV IX of the difference between

the fifth and first quintiles increases but the magnitude of its Newey-West t-statistic

declines below the 1.96 cutoff.

Panels C and D of Table I summarize an update to the study in Ang, Hodrick, Xing,

and Zhang (2006) that adds 131 observations by including data through December 2011.

For the most part, the results over the longer period are qualitatively similar to the results

over the shorter period, although the additional data dilute the effect of the October 1987

leverage point. On the full dataset, the Newey-West t-statistics for FV IX declined, in

some cases substantially, for Quintiles 1 through 4, although it increased from 4.27 to 5.61

in Quintile 5. When October 1987 is removed, the additional 131 observations raised the

magnitudes of some of the FV IX Newey-West t-statistics and lowered the magnitudes of

other, but the magnitudes of all of them remained below the 1.96 cutoff.
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Table I: Portfolios Sorted by Exposure to Aggregate Volatility Shocks
Next Month Full Sample

Std % Mkt CAPM FF-3 Pre-Formation Pre-Formation Post-Formation Post-Formation
Rank Mean Dev Share Size Alpha Alpha β∆V IX βFV IX β∆V IX βFV IX

A. Full Sample (1986-2001)

1 1.71 5.64 9.15 3.66 0.28 0.30 -1.34 -1.45 -0.024 -0.0412

[1.49] [1.69] [-3.41]

2 1.39 4.44 28.73 4.76 0.13 0.08 -0.43 -0.47 -0.027 -0.0285

[1.39] [0.95] [-4.12]

3 1.34 4.33 30.79 4.76 0.09 0.07 0.03 0.04 0.000 -0.0188

[0.86] [0.72] [-2.92]

4 1.19 4.76 24.04 4.76 -0.14 -0.11 0.51 0.55 0.028 0.0319

[-1.54] [-1.22] [6.15]

5 0.62 6.57 7.29 3.70 -0.91 -0.65 1.49 1.62 0.067 0.0733

[-3.42] [-3.23] [4.27]

5-1 -1.09 -1.19 -0.96 0.1145

[-3.98] [-3.39] [-3.11] [4.68]

B. Without October 1987 (1986-2001)

1 1.89 5.11 9.17 3.66 0.34 0.35 -1.34 -1.45 -0.025 -0.0817

[1.94] [1.97] [-1.89]

2 1.54 4.01 28.79 4.76 0.18 0.12 -0.43 -0.47 -0.027 -0.0220

[1.80] [1.50] [-0.90]

3 1.48 3.93 30.83 4.76 0.12 0.10 0.03 0.04 0.000 0.0031

[1.20] [1.16] [0.19]

4 1.31 4.50 24.00 4.76 -0.18 -0.15 0.51 0.55 0.028 0.0355

[-2.14] [-1.91] [1.27]

5 0.75 6.35 7.20 3.70 -0.99 -0.76 1.49 1.63 0.067 0.0684

[-3.82] [-4.13] [1.42]

5-1 -1.14 -1.34 -1.11 0.1501

[-4.29] [-4.11] [-4.03] [1.85]

C. Full Sample (1986-2011)

1 1.20 5.96 9.77 4.25 0.27 0.27 -1.25 -0.85 -0.005 -0.0363

[1.75] [1.83] [-2.31]

2 0.98 4.54 28.97 5.33 0.18 0.16 -0.40 -0.26 -0.026 -0.0443

[2.32] [2.34] [-2.57]

3 0.90 4.55 30.64 5.38 0.09 0.05 0.03 0.06 -0.005 -0.0178

[1.29] [0.95] [-2.58]

4 0.83 5.08 23.08 5.28 -0.03 -0.08 0.49 0.37 0.021 0.0218

[-0.40] [-1.06] [1.77]

5 0.28 7.15 7.55 4.25 -0.75 -0.72 1.42 1.02 0.074 0.0946

[-4.20] [-4.58] [5.61]

5-1 -0.92 -1.03 -0.99 0.1309

[-4.02] [-4.50] [-4.17] [4.47]

D. Without October 1987 (1986-2011)

1 1.30 5.69 9.78 4.25 0.24 0.21 -1.25 -0.84 -0.005 -0.0371

[1.66] [1.45] [-1.19]

2 1.06 4.31 29.00 5.33 0.15 0.15 -0.40 -0.26 -0.026 -0.0336

[2.42] [2.45] [-1.72]

3 0.98 4.35 30.66 5.39 0.05 0.05 0.03 0.06 -0.005 0.0104

[0.71] [0.71] [0.75]

4 0.89 4.95 23.05 5.28 -0.11 -0.11 0.49 0.37 0.021 0.0156

[-1.35] [-1.36] [0.81]

5 0.35 7.04 7.50 4.25 -0.86 -0.87 1.42 1.02 0.075 0.0712

[-4.78] [-5.26] [1.52]

5-1 -0.95 -1.09 -1.08 0.1083

[-4.20] [-5.04] [-4.93] [1.65]

Table I: Following Ang, Hodrick, Xing, and Zhang (2006), we form value-weighted quintile
portfolios every month by regressing excess individual stock return on ∆V IX, controlling
for the MKT factor, using daily data over the previous month. Stocks are sorted into
quintiles based on the coefficient β∆V IX from lowest (quintile 1) to highest (quintile 5). The
statistics in the columns labeled Mean and Std Dev are measured in monthly percentage
terms and apply to total, not excess, simple returns. Size reports the average log market
capitalization for firms within the portfolio. The row “5–1” refers to the difference in
monthly returns between portfolio 5 and portfolio 1. The Alpha columns report Jensen’s
alpha with respect to the CAPM or the Fama and French (1993) three-factor model. The
pre-formation betas refer to the value-weighted β∆V IX or βFV IX averaged across the whole
sample. The second to last column reports the β∆V IX loading computed over the next
month with daily data. The column reports the next month β∆V IX loadings averaged
across months. The last column reports ex post βFV IX over the whole sample, where
FV IX is the factor mimicking aggregate volatility risk. To correspond with the Fama-
French alphas, we compute the ex post betas by running a four-factor regression with the
three Fama-French factors together with the factor that mimics aggregate volatility risk,
following the regression in Formula (1). Robust Newey and West (1987) t-statistics are
reported in square brackets. Panels A and B are based on the 180-month dataset, February
1986–January 2001. Panels C and D are based on the 331-month dataset February 1986–
December 2011. Panels A and C include all data; Panels B and D exclude the October
1987 leverage point.
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3 A Standard Measure of a Leverage Point’s Influ-

ence on Statistical Significance

The volume of the regression confidence ellipsoid has a major effect on confidence testing.4

The smaller the ellipsoid, the easier it is to reject a null hypothesis. A standard statistic

that measures the influence of an observation on the confidence ellipsoid volume is the

covariance ratio, denoted CV R. The statistic is based on the determinant of the covariance

matrix of estimated betas, which is inversely related to the square of the confidence

ellipsoid volume. By definition, CV Rt is the ratio of the determinants of the covariance

matrices of estimated betas with and without observation t:

CV Rt =
det
(
s2
t (X

>
t Xt)

−1
)

det (s2(X>X)−1)
,

where X is the matrix of independent variables, s2 is the sum of the squared residuals and

the subscript, t, indicates that the tth observation has been excluded from the dataset.

Belsley, Kuh, and Welsch (1980) and Chatterjee and Hadi (1986) suggest that 3p/T is a

reasonable upper bound for values of |CV R − 1|, where p is the number of independent

variables (including the intercept) and T is the number of observations.

For each quintile regression, and for the regression of the difference between quintiles

1 and 5, we estimated CV R for each observation. The results for the regression over

the longer period that includes data through December 2011 are shown in Figure 1.

Observations that are influential according to the 3p/T rule are marked in red. October

1987 is a standout in every case. This confirms that the inclusion of October 1987 in

the OLS regression artificially lowers the volume of the confidence ellipsoid in a way that

makes insignificant findings appear significant.

4 Median Regression

There is a large literature devoted to the analysis of datasets that do not satisfy the

assumptions that justify OLS estimation; see, for example, Koenker (2005). One of the

most accessible techniques is a median regression, which determines coefficients β by

minimizing the objective: ∑
t

|yt − xtβ − α|. (2)
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Figure 1: Covariance ratios for observations in an OLS estimation of six four-factor models
based on Fama and French (1993) plus FV IX over the longer time horizon, February
1986–December 2011. The dependent variables are the five Quintile portfolios and the
difference between Quintiles 1 and 5. Outliers satisfying |CV R − 1| > 3p/T are marked
in red. The October 1987 leverage point is a standout in each regression.
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Since Formula 2 features the absolute values of residuals and not their squares, leverage

points and other types of outliers have less impact on the results of median regression

than on the results of OLS regression. We estimate betas with a median regression, and we

explore the statistical significance of the estimates with bootstrapped percentile confidence

intervals. This method for estimating statistical significance is widely used because it is

conceptually simple and easily implementable. However, it must be used with caution

when the histogram of the bootstrapped betas is unstable, as this suggests that the

underlying assumptions of the bootstrap may not be satisfied.

Using the objective in Formula 2, we ran four median regressions based on Formula 1:

over the shorter and longer time horizons, and with and without October 1987. The results

are displayed in Table II. Over shorter time horizon, February 1986–January 2001, the

results indicate that on the full dataset, βFV IX appears to be statistically significant for

Quintiles 4 and 5, but not for the other quintiles. When October 1987 is omitted, βFV IX

does not appear to be statistically significant in any of the regressions. Over the longer

horizon, February 1986–December 2011, βFV IX appears to be statistically significant for

Quintiles 2 and 5, with and without October 1987, but not for the other quintiles.

How much credence do we give to these results? To answer that question, we examine

the histograms of bootstrapped betas used to determine the percentile confidence intervals.

Histograms of 100,000 bootstrapped estimates of βFV IX for Quintile 4 for each of the

four median regressions each are displayed in Figure 2. The histograms in the left panel

of Figure 2 are based on the full datasets. The inclusion of October 1987 distorts the

histograms with a dramatic skew, which is to the right over the shorter time period and

to the left over the longer time period. When October 1987 is omitted, the inclusion of the

extra 131 observations through December 2011 broaden and flatten the histogram while

leaving an interesting spike toward the right. The non-Gaussian shapes, the instability

over time, and the dramatic impact of a single observation lead us to suspect that with or

without October 1987, the assumptions underlying the bootstrap are not satisfied. Based

on this and the mixed nature of the results over quintiles, the median regressions do not

support the conclusion that FVIX is a statistically significant volatility factor.

While a median regression appears to be better suited to our dataset than an OLS re-

gression, a more sophisticated median regression that allows for a mixture of distributions

may be better still. We continue to pursue this line of inquiry.
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Table II: Median Regression βFV IX
Full Sample

Post-Formation Percentile
Rank βFV IX Confidence Interval

A. Full Sample (1986-2001)

1 -0.0307 -0.1361 0.0577

2 -0.0265 -0.0461 0.0130

3 -0.0238 -0.0306 0.0357

4∗ 0.0305 0.0085 0.0806

5∗ 0.0640 0.0136 0.1228

5-1 0.0975 -0.0061 0.1998

B. Without October 1987 (1986-2001)

1 -0.0736 -0.1657 0.0878

2 -0.0241 -0.0584 0.0261

3 -0.0061 -0.0371 0.0427

4 0.0571 -0.0098 0.0944

5 0.0782 -0.0206 0.1491

5-1 0.1400 -0.0518 0.2359

C. Full Sample (1986-2011)

1 -0.0292 -0.0916 0.0698

2∗ -0.0272 -0.0725 -0.0124

3 -0.0195 -0.0274 0.0362

4 0.0329 -0.0357 0.0420

5∗ 0.0837 0.0396 0.1395

5-1 0.1229 -0.0304 0.1878

D. Without October 1987 (1986-2011)

1 -0.0202 -0.1203 0.0931

2∗ -0.0361 -0.0805 -0.0038

3 -0.0025 -0.0347 0.0433

4 0.0040 -0.0464 0.0486

5∗ 0.1054 0.0114 0.1563

5-1 0.0953 -0.0601 0.2313

Table II: Percentile confidence intervals for median regressions. Panels A and B are based
on the 180-month dataset, February 1986–January 2001. Panels C and D are based on the
331-month dataset February 1986–December 2011. Panels A and C include all data; Panels
B and D exclude the October 1987 leverage point. Over the shorter time horizon, February
1986–January 2001, on the full dataset, βFV IX appears to be statistically significant for
Quintiles 4 and 5, but not otherwise. When October 1987 is omitted, βFV IX does not
appear to be statistically significant in any of the regressions. Over the longer horizon,
February 1986–December 2011, βFV IX appears to be statistically significant for Quintiles
2 and 5, with and without October 1987, but not for the other quintiles.
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Figure 2: Histograms of bootstrapped values of βFV IX estimated using median regression.
The histograms in the left panel include the October 1987 leverage point and the his-
tograms in the right panel omit it. The histograms in the top panels are based on the
shorter period, February 1986–January 2001, and the histograms in the bottom panels
are based on the longer period, February 1986–December 2011.
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5 Conclusion

Ordinary least squares regression is the bedrock of empirical finance. However statistical

inference based on OLS regression is valid only when the underlying dataset is Gaussian.

The real-world example discussed in this article illustrates how a single leverage point can

generate the illusion of statistical significance, leading to an unsound conclusion that has

echoed throughout the financial economics literature.

Since extreme events are endemic to financial markets, there is a compelling case

for requiring the reporting of standard statistics for detecting influential observations.

Standard measures of the impact of influential observations on regression coefficients,

fitted values, and t-statistics can enable researchers to avoid erroneous inference and to

apply regression techniques that are appropriate for the data they are examining.

There is no single procedure for handling leverage points and other statistical anoma-

lies. Financial researchers cannot simply ignore crashes in the estimation of risk and re-

turn; removal and winsorization can mask important characteristics of a dataset. Median

regression and other quantile-based estimation techniques, which are less sensitive to the

statistical extremes, may be more suitable than OLS regression for many financial data

sets. While much work remains to be done in order to identify the tools that are fully

appropriate for analyzing financial data, the inclusion of standard statistics as part of

best practices in empirical finance can prevent erroneous conclusions from being drawn.

A A Simple Example of How a Leverage Point Can

Lead to False Inference in OLS Regression

For illustration, we consider a one-variable model. Suppose we are asked to analyze 100

independent observations, (X1, Y1), (X2, Y2), . . . , (X100, Y100) whose distribution we do not

know. If we fit the model:

Y = α + βX + ε
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with an OLS regression, we obtain estimates:

β̂ =

∑
XnYn − 1

100

∑
Xn

∑
Yn∑

X2
n − 1

100
(
∑
Xn)2

α̂ =
1

100

(∑
Yn − β̂

∑
Xn

)
.

of β and α, and an estimate:

σ̂β =
1

10

√ ∑
ε2n∑
X2
n

of σβ, the standard error of β. Suppose, unbeknownst to us, the data were drawn from a

standard bivariate normal distribution, so that α = β = 0; with these true parameters,

εn = Yn is standard normal and the standard error of beta, σβ is 1/10. So we expect to see

sample estimates like β̂ = .15 frequently. Given the true distribution, it is legitimate to

test the null hypothesis that β = 0 by comparing the resulting t-statistic to the standard

normal distribution. As long as σ̂β is reasonably close to σβ, we will get a t-statistic that

will not lead us to reject the (true) null hypothesis that β = 0.

Suppose the next draw turns out to be a large outlier that happens to be on the

regression line:(X101, Y101) = (25, α̂ + 25β̂). Then our estimates β̂ and α̂ are unchanged

but the standard error shrinks by a factor of roughly 2.7:

σ̂β(new) =
1√
101

√ ∑
ε2n∑
X2
n

=
1√
101

√ ∑100
n=1 ε

2
n + 0∑n

n=1X
2
n + 625σ2

X

=

√
100

101

√ ∑100
n=1X

2
n∑100

n=1X
2
n + 625σ2

X

1√
100

√∑100
n=1 ε

2
n∑100

n=1X
2
n

≈
√

100

101

√
100σ2

X

725σ2
X

1√
100

√∑100
n=1 ε

2
n∑100

n=1 X
2
n

≈ σ̂β
2.7

The presence of the outlier invalidates any statistical inference that compares the t-

statistic to a standard normal distribution. If we ignore that point, and naively compare

the t-statistic to a standard normal distribution, we will erroneously reject the true null

hypothesis that β̂ = 0.
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B Generating Apparent Statistical Significance From

Pure Noise and a Single Outlier

To shed light on the capacity of a single outlier to generate the illusion of statistical

significance in an ordinary least squares regression, we randomly scramble the monthly

FV IX returns over time, except for the October 1987 outlier, which is left fixed, and

rerun the regression in Formula (1). Figure 3 presents the histograms of Newey-West t-

statistics of FV IX betas for Quintiles 1 and 5 resulting from 106 scrambles. Using the

Gaussian cutoff of 1.96 for statistical significance at the 5% level as a cutoff, we find that

55% of the t-statistics appear to be statistically significant for Quintile 1 and 94% appear

to be statistically significant for Quintile 5. Although the scrambling means that 179 of

the 180 monthly values of FV IX are pure noise, a näıve interpretation of the t-statistics

that assumes the regression residuals follow a standard normal leads, most of the time,

to rejection of the true hypothesis that the FV IX betas are zero.

C Replication of Ang, Hodrick, Xing, and Zhang (2006,

Table I)

Our quintile portfolio means, standard deviations, market shares and sizes are close to

the corresponding values reported in Ang, Hodrick, Xing, and Zhang (2006, Table I).

Our pre-formation β∆V IX coefficients for quintiles 1 and 5 are lower in magnitude than

the corresponding values in Ang, Hodrick, Xing, and Zhang (2006, Table I) by roughly

40%. We found we could match the figures in Ang, Hodrick, Xing, and Zhang (2006,

Table I) by equally weighting the betas of the individual stocks instead of capitalization

weighting them, and conjecture that Ang, Hodrick, Xing, and Zhang (2006) inadvertently

used equal weighting.

Our post-formation βFV IX coefficients are a factor of 100 lower than the correspond-

ing values in Ang, Hodrick, Xing, and Zhang (2006, Table I). Based on an email message

we received from Professor Xing, we believe that Ang, Hodrick, Xing, and Zhang (2006)

regressed on FV IX/100 rather than on FV IX; with this understanding, we qualitatively

replicate their coefficients. Regressing on FV IX/100 rather than on FV IX has no effect

on the reported t-statistics, which we were able to replicate qualitatively. However, it
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Figure 3: Histograms of t-statistics for βFV IX . We ran 106 repetitions of the four-factor
regression in Formula (1) with the returns to FV IX scrambled randomly in time, but
with the October 1987 outlier fixed. The histogram of t-statistics for Quintile 1 is in the
left panel, and for Quintile 5 is the right panel. Using the Gaussian cutoff of 1.96 for
statistical significance at the 5% level as a cutoff, we find that 55% of the t-statistics
appear to be statistically significant for Quintile 1 and 94% appear to be statistically
significant for Quintile 5.
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increases the reported Full Sample Post-Formation βFV IX numbers by a factor of 100,

making it appear that the post-formation βFV IX spreads are much larger than the post-

formation β∆V IX spreads, which Ang, Hodrick, Xing, and Zhang (2006) characterize as

“disappointingly very small.” Our estimate of the monthly return to FV IX is approx-

imately 100 times larger than reported by Ang, Hodrick, Xing, and Zhang (2006); we

believe they calculated the return to FV IX/100.

Given that Ang, Hodrick, Xing, and Zhang (2006) reported that FV IX is a sta-

tistically significant factor, we were surprised to find no discussion of its incremental

explanatory power over and above the factors in Fama and French (1993). Out of curios-

ity, we examined the question. A standard F -test shows that on the complete dataset,

FV IX appears to have incremental explanatory power in all quintiles. However, when

the October 1987 leverage point is removed, FV IX does not add explanatory power for

Quintiles 2, 3, 4 and 5.

Notes

1The original CBOE Market Volatility Index was launched in 1993 under the name V IX and it was

based on the Black-Scholes formula. In 2003, the CBOE created a new index based on market prices of

call and put options. At that time, they renamed their original index V XO and gave the name V IX to

the new index. Ang, Hodrick, Xing, and Zhang (2006) use the index now called V XO, but it is referred

to as V IX in their article. To facilitate comparison with the material in their article, we retain the name

V IX in this article.

2Detailed comments on our replication of Ang, Hodrick, Xing, and Zhang (2006, Table I) are in

Appendix C.

3To be more precise, the October 1987 FV IX and MKT are 26-sigma and -5.5-sigma events relative

to the standard deviation of FV IX and MKT over the other 179 months in the sample.

4A δ-confidence ellipsoid for an OLS regression with p independent variables (including the intercept)

and T observations is given by:

(β − β̂)>
(X>X)

s2
(β − β̂) ≤ (T − 1)p

T (T − p)
Fp,T−p(δ).
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Pástor, Luboš, and Robert F. Stambaugh, 2003, Liquidity risk and expected returns, The

Journal of Political Economy 111, 642–685.

Sefton, James, David Jessop, Giuliano De Rossi, Claire Jones, and Heran Zhang, 2011,

Low-risk investing, UBS Investment Research.

20


